Skip to main content

For the most up to date publications list, please visit Dr. Meyer’s Google Scholar. 

2020 – present\

287) Reduction of CO to Methanol with Recyclable Organic Hydrides.  Andressa V. Müller, Shahbaz Ahmad, Jake T. Sirlin, Mehmed Z. Ertem, Dmitry E. Polyansky, David C. Grills, Gerald J. Meyer, Renato N. Sampaio*, and Javier J. Concepcion*. J. Am. Chem. Soc. 2024, XXXX, XXX, XXX-XXX

The reaction steps for the selective conversion of a transition metal carbonyl complex to a hydroxymethyl complex that releases methanol upon irradiation with visible light have been successfully quantified in acetonitrile solution with dihydrobenzimidazole organic hydride reductants. Dihydrobenzimidazole reductants have been shown to be inactive toward H2 generation in the presence of a wide range of proton sources and have been regenerated electrochemically or photochemically. Specifically, the reaction of cis-[Ru(bpy)2(CO)2]2+ (bpy = 2,2′-bipyridine) with one equivalent of a dihydrobenzimidazole quantitatively yields a formyl complex, cis-[Ru(bpy)2(CO)(CHO)]+, and the corresponding benzimidazolium on a seconds time scale. Kinetic experiments revealed a first-order dependence on the benzimidazole hydride concentration and an unusually large kinetic isotope effect, inconsistent with direct hydride transfer and more likely to occur by an electron transfer-proton-coupled electron transfer (EΤ−PCET) or related mechanism. Further reduction/protonation of cis-[Ru(bpy)2(CO)(CHO)]+ with two equivalents of the organic hydride yields the hydroxymethyl complex cis-[Ru(bpy)2(CO)(CH2OH)]+. Visible light excitation of cis-[Ru(bpy)2(CO)(CH2OH)]+ in the presence of excess organic hydride was shown to yield free methanol. Identification and quantification of methanol as the sole CO reduction product was confirmed by 1H NMR spectroscopy and gas chromatography. The high selectivity and mild reaction conditions suggest a viable approach for methanol production from CO, and from CO2 through cascade catalysis, with renewable organic hydrides that bear similarities to Nature’s NADPH/NADP+.

286) Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO2 Reduction. Bo Shang, Fengyi Zhao, Sa Suo, Yuanzuo Gao, Colton Sheehan, Sungho Jeon, Jing Li, Conor L. Rooney, Oliver Leitner, Langqiu Xiao, Hanqing Fan, Menachem Elimelech, Leizhi Wang, Gerald J. Meyer, Eric A. Stach, Thomas E. Mallouk, Tianquan Lian*, and Hailiang Wang*. J. Am. Chem. Soc. 2024, 146, 3, 2267–2274.

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor–catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm–2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

285) Direct Evidence for a Sequential Electron Transfer–Proton Transfer Mechanism in the PCET Reduction of a Metal Hydroxide Catalyst.Matthew C. Kessinger, Jeremiah Xu, Kai Cui, Quentin Loague, Alexander V. Soudackov, Sharon Hammes-Schiffer, and Gerald J. Meyer*. J. Am. Chem. Soc. 2024, 146, 3, 1742–1747.

The proton-coupled electron transfer (PCET) mechanism for the reaction Mox–OH + e + H+ → Mred–OH2 was determined through the kinetic resolution of the independent electron transfer (ET) and proton transfer (PT) steps. The reaction of interest was triggered by visible light excitation of [RuII(tpy)(bpy′)H2O]2+, RuII–OH2, where tpy is 2,2′:6′,2″-terpyridine and bpy′ is 4,4′-diaminopropylsilatrane-2,2′-bipyridine, anchored to In2O3:Sn (ITO) thin films in aqueous solutions. Interfacial kinetics for the PCET reduction reaction were quantified by nanosecond transient absorption spectroscopy as a function of solution pH and applied potential. Data acquired at pH = 5–10 revealed a stepwise electron transfer–proton transfer (ET–PT) mechanism, while kinetic measurements made below pKa(RuIII–OH/OH2) = 1.3 were used to study the analogous interfacial reaction, where electron transfer was the only mechanistic step. Analysis of this data with a recently reported multichannel kinetic model was used to construct a PCET zone diagram and supported the assignment of an ET–PT mechanism at pH = 5–10. Ultimately, this study represents a unique example among Mox–OH/Mred–OH2 reactivity where the protonation and oxidation states of the intermediate were kinetically and spectrally resolved to firmly establish the PCET mechanism.

284) General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System. Kai Cui, Alexander V. Soudackov, Matthew C. Kessinger, Jeremiah Xu, Gerald J. Meyer, and Sharon Hammes-Schiffer*. J. Am. Chem. Soc. 2023, 145, 35, 19321–19332.

The pH dependence of proton-coupled electron transfer (PCET) reactions, which are critical to many chemical and biological processes, is a powerful probe for elucidating their fundamental mechanisms. Herein, a general, multichannel kinetic model is introduced to describe the pH dependence of both homogeneous and electrochemical PCET reactions. According to this model, a weak pH dependence can arise from the competition among multiple sequential and concerted PCET channels involving different forms of the redox species, such as protonated and deprotonated forms, as well as different proton donors and acceptors. The contribution of each channel is influenced by the relative populations of the reactant species, which often depend strongly on pH, leading to complex pH dependence of PCET apparent rate constants. This model is used to explain the origins of the experimentally observed weak pH dependence of the electrochemical PCET apparent rate constant for a ruthenium-based water oxidation catalyst attached to a tin-doped In2O3 (ITO) surface. The weak pH dependence is found to arise from the intrinsic differences in the rate constants of participating channels and the dependence of their relative contributions on pH. This model predicts that the apparent maximum rate constant will become pH-independent at higher pH, which is confirmed by experimental measurements. Our analysis also suggests that the dominant channels are electron transfer at lower pH and sequential PCET via electron transfer followed by fast proton transfer at higher pH. This work highlights the importance of considering multiple competing channels simultaneously for PCET processes.

283) Nanosecond Intra-Ionic Chloride Photo-Oxidation. Alexander M. Deetz, Matthew J. Goodwin, Erin A. Kober, and Gerald J. Meyer*. Inorg. Chem. 2023, 62, 29, 11414–11425.

Transition-metal photocatalysts capable of oxidizing chloride are rare yet serve as an attractive means to controllably generate chlorine atoms, which have continued to garner the interest of researchers for notable applications in photoredox catalysis and solar energy storage. Herein, a new series of four Ir-photocatalysts with different dicationic chloride-sequestering ligands were synthesized and characterized to probe the relationship between chloride binding affinities, ion pair solution structures, and rate constants for chloride photo-oxidation in acetonitrile at room temperature. The substituents on the quaternary amines of dicationic bipyridine ligands had negligible effects on the photocatalyst excited-state reduction potential, yet dramatically influenced the affinity for chloride binding, indicating that synthetic design can be utilized to independently tune these important properties. An inverse correlation was observed between the equilibrium constant for chloride ion pairing and the rate constant for intra-ionic chloride oxidation. Exceptions to this trend suggest structural differences in the ion-paired solution structures, which were probed by 1 H NMR binding experiments. This study provides new insights into light induced oxidation of ion-paired substrates, a burgeoning approach that offers to circumvent diffusional constraints of photocatalysts with short excited-state lifetimes. Ground-state association of chloride with these photocatalysts enables intra-ionic chloride oxidation on a rapid nanosecond timescale.

282) Impact of Molecular Orientation on Lateral and Interfacial Electron Transfer at Oxide Interfaces. Quentin Loague, Niklas D. Keller, Andressa V. Müller, Bruno Martín Aramburu-Trošelj, Rachel E. Bangle, Jenny Schneider, Renato N. Sampaio, Andre S. Polo, and Gerald J. Meyer*. ACS Appl. Mater. Interfaces 2023, 15, 28, 34249–34262.

281) Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions. Niklas D. Keller, Pierpaolo Vecchi, David C. Grills, Dmitry E. Polyansky, Gabriella P. Bein,
Jillian L. Dempsey, James F. Cahoon, Gregory N. Parsons, Renato N. Sampaio,* and Gerald J. Meyer*. J. Am. Chem. Soc. 2023, 145, 20, 11282–11292.

280) Electroabsorption as a Probe of Electrons Injected into Nanocrystalline SnO2/TiO2 Core/Shell Thin Films. Erica M. James, Marc T. Bennett, and Gerald J. Meyer*. J. Phys. Chem. C 2023, 127, 12, 5904–5910.

279) Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands. Xiaofan Jia,⊥ Hannah S. Nedzbala,⊥ Samuel R. Bottum, James F. Cahoon, Javier J. Concepcion,* Carrie L. Donley, Albert Gang, Qi Han, Nilay Hazari,* Matthew C. Kessinger, Matthew R. Lockett, James M. Mayer,* Brandon Q. Mercado, Gerald J. Meyer, Adam J. Pearce, Conor L. Rooney, Renato N. Sampaio, Bo Shang, and Hailiang Wang. Inorg. Chem. 2023, 62, 5, 2359–2375.

278) Chloride Oxidation by One- or Two-Photon Excitation of N‑Phenylphenothiazine. Pengju Li, Alexander M. Deetz, Jiaming Hu, Gerald J. Meyer, and Ke Hu. J. Am. Chem. Soc. 2022, 144, 38, 17604–17610

277) A quantitative model of charge injection by ruthenium chromophores connecting femtosecond to continuous irradiance conditions. Thomas P. Cheshire, Jéa Boodry, Erin A. Kober, M. Kyle Brennaman, Paul G. Giokas, David F. Zigler, Andrew M. Moran, John M. Papanikolas, Gerald J. Meyer, Thomas J. Meyer, Frances A. Houle. J. Chem. Phys. 157, 244703 (2022).

276) Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. Matthew Kessinger, Alexander V. Soudackov, Jenny Schneider, Rachel E. Bangle, Sharon Hammes-Schiffer*, and Gerald J. Meyer*. J. Am. Chem. Soc. 2022, 144, 44, 20514–20524.

275) Reorganization Energies for Interfacial Electron Transfer across Phenylene Ethynylene Rigid-Rod Bridges. Marzieh Heidari, Quentin Loague, Rachel E. Bangle, Elena Galoppini, and Gerald J. Meyer. ACS Appl. Mater. Interfaces 2022, 14, 30, 35205–35214.

274) Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers. Alexander M. Deetz and Gerald J. Meyer. JACS Au 2022, 2, 4, 985–995.

273) Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. Zijian Zhao, Fushuang Niu, Pengju Li, Hanqi Wang, Zhenghao Zhang, Gerald J. Meyer, and Ke Hu. J. Am. Chem. Soc. 2022, 144, 16, 7043–7047.

272) Free Energy Dependencies for Interfacial Electron Transfer from Tin-Doped Indium Oxide (ITO) to Molecular Photoredox Catalysts. Rachel E. Bangle, Jenny Schneider, Quentin Loague, Matthew Kessinger, Andressa V. Müller and Gerald J. Meyer. 2022 ECS J. Solid State Sci. Technol.11 025003

271) Photocatalyst assemblies with two halide ions.  Michael D. Turlington, Alexander M. Deetz, Dylan Vitt, Gerald J. Meyer. Journal of Photochemistry and Photobiology, Volume 9, 2022, 100090.

270) On the Determination of Halogen Atom Reduction Potentials with Photoredox Catalysts. Alexander M. Deetz, Ludovic Troian-Gautier, Sara A. M. Wehlin, Eric J. Piechota, and Gerald J. Meyer*. J. Phys. Chem. A 2021, 125, 42, 9355–9367.

269) Dye-sensitized solar cells strike back. Ana Bele´n Mun˜oz-Garcı´a, Iacopo Benesperi, Gerrit Boschloo Javier J. Concepcion, Jared H. Delcamp, Elizabeth A. Gibson, Gerald J. Meyer, Michele Pavone, Henrik Pettersson, Anders Hagfeldt and Marina Freitag. Chem. Soc. Rev., 2021, 50, 12450-12550.

268) Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green LightAkin Aydogan, Rachel E. Bangle, Alejandro Cadranel, Michael D. Turlington, Daniel T. Conroy,
Emilie Cauët, Michael L. Singleton, Gerald J. Meyer,* Renato N. Sampaio,* Benjamin Elias,* and Ludovic Troian-Gautier*. J. Am. Chem. Soc. 2021, 143, 38, 15661–15673.

267) Dual-Sensitizer Photoanode for Bromide Oxidation.  Michael D. Turlington, Matthew D. Brady, and Gerald J. Meyer. ACS Applied Energy Materials 2021 4 (1), 745-754.

266) Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO2|TiO2 Core|Shell Nanostructures. Rachel E. Bangle, Michael J. Mortelliti, Ludovic Troian-Gautier, Jillian L. Dempsey, and Gerald J. Meyer. The Journal of Physical Chemistry C 2020 124 (45), 25148-25159.

265) Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. Aramburu-Trošelj, B. M.; Bangle, R. E.; Meyer, G. J. Solvent Influence on Non-Adiabatic Interfacial Electron Transfer at Conductive Oxide Electrolyte Interfaces. J. Chem. Phys. 2020, 153 (13), 134702.

264) Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. Wehlin, S. A. M.; Troian-Gautier, L.; Maurer, A. B.; Brennaman, M. K.; Meyer, G. J. Photophysical Characterization of New Osmium (II) Photocatalysts for Hydrohalic Acid Splitting. J. Chem. Phys. 2020, 153 (5), 54307.

263) Perspectives in Dye Sensitization of Nanocrystalline Mesoporous Thin Films. Hu, K.; Sampaio, R.N.; Schneider, J.; Troian-Gautier, L.; Meyer, G.J. J. Am. Chem. Soc. 2020, 142, 16099-16116.

262) Kinetic Evidence That the Solvent Barrier for Electron Transfer Is Absent in the Electric Double Layer. Rachel E. Bangle, Jenny Schneider, Daniel T. Conroy, Bruno M. Aramburu-Trošelj, and Gerald J. Meyer. Journal of the American Chemical Society 2020 142 (35), 14940-14946

261) Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations. Cheshire, T.P.; Brenneman, M.K.P.; Giokas, P.G.; Zigler, D.F.; Moran, A.M.; Papanikolas, J.M.; Meyer, G.J.; Meyer, T.J.; Houle, F.A. J. Phys. Chem. B 2020, 124, 5971-5985.

260) Efficiency Considerations for SnO2 Based Dye-Sensitized Solar Cells. DiMarco, B. N.; Sampaio, R. N.; James, E. M.; Barr, T. J.; Bennett, M.; Meyer, G. J. ACS Appl. Mater. Interfaces. 2020, 12 (21), 23923-23930.

259) Stark Spectroscopic Evidence that a Spin Change Accompanies Light Absorption in Transition Metal Polypyridyl Complexes. Maurer, A. B.; Meyer, G. J. J. Am. Chem. Soc. 2020, 142 (15), 6847-6851.

258) Improved Visible Light Absorption of Potent Iridium(III) Photooxidants for Excited-State Electron Transfer Chemistry. Bevernaegie, R.; Wehlin, S. A. M.; Piechota, E. J.; Abraham, M.; Philouze, C.; Troian-Gautier, L. J. Am. Chem. Soc. 2020, 142 (6), 2732-2737.

257) Electron Transfer Reorganization Energies in the Electrode–Electrolyte Double Layer. Bangle, R. E.; Schneider, J.; Piechota, E. J.; Troian-Gautier, L.; Meyer, G. J. J. Am. Chem. Soc. 2020, 142 (2), 674-679.

256) Excited-State Proton-Coupled Electron Transfer within Ion Pairs. Swords, W.B.; Meyer, G.J.; Hammarstrom, L. Chem Sci. 2020, 11, 3460-3473.

2015 - 2019

255) Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples. Piechota, E. J.; Meyer, G. J. J. Chem. Ed. 2019, 96 (11), 2450-2466.

254) Inhibiting Charge Recombination in cis-Ru(NCS)2 Diimine Sensitizers with Aromatic Substituents. Muller, A. V. de Oliveira, K. T.; Meyer, G. J.; Polo, A. S. ACS Appl. Mater. Interfaces. 2019, 11 (46), 43223-43234.

253) Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Wang, D.; Wang, L.; Brady, M. D.; Dares, C. J.; Meyer, G. J.; Meyer, T. J.; Concepcion, J. J. J. Phys. Chem. C. 2019, 123 (50), 30039-30045.

252) Excited-State Dipole Moments of Homoleptic [Ru(bpy′)3]2+ Complexes Measured by Stark Spectroscopy. Maurer, A. B.; Piechota, E. J.; Meyer, G. J. J. Phys. Chem. A. 2019, 123 (41), 8745-8754.

251) Factors that Control the Direction of Excited-State Electron Transfer at Dye-Sensitized Oxide Interfaces. Bangle, R. E.; Meyer, G. J. J. Phys. Chem. C. 2019, 123 (42), 25967-25976.

250) Electron Localization and Transport in SnO2/TiO2 Mesoporous Thin Films: Evidence for a SnO2/SnxTi1-xO2/TiO2 Structure. James, E. M.; Bennett, M. T.; Bangle, R. E.; Meyer, G. J. Langmuir2019, 35 (39), 12694-12703.

249) Flipping Molecules Over on TiO2 Surfaces with Light and Electric Fields. Sampaio, R. N.; Li, G.; Meyer, G. J. J. Am. Chem. Soc. 2019, 141 (35), 13898-13904.

248) An Insulating Al2O3 Overlayer Prevents Lateral Hole Hopping Across Dye-Sensitized TiO2 Surfaces. Brady, M. D.; Troian-Gautier, L.; Motley, T. C.; Turlington, M. D.; Meyer, G. J. ACS Appl. Mater. Interfaces 2019, 11 (30), 27453-27463.

247) Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Schneider, J.; Bangle, R. E.; Swords, W. B.; Troian-Gautier, L.; Meyer, G. J. J. Am. Chem. Soc. 2019, 141 (25), 9758-9763.

246) A Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. Wang, D.; Sampaio, R. N.; Troian-Gautier, L.; Marquad, S. L.; Farnum, B. H.; Sherman, B. D.; Sheridan, M. V.; Dares, C. J.; Meyer, G. J.; Meyer, T. J. J. Am. Chem. Soc. 2019, 141 (19), 7926-7933.

245) Halide Photoredox Chemistry. Troian-Gautier, L.; Turlington, M. D.; Wehlin, S. A. M.; Maurer, A. B.; Brady, M. D.; Swords, W. B.; Meyer, G. J. Chem. Rev. 2019, 119 (7), 4628-4683.

244) Control of Excited-State Supramolecular Assembly Leading to Halide Photorelease. Turlington, M. D.; Troian-Gautier, L.; Sampaio, R. N.; Beauvilliers, E. E.; Meyer, G. J. Inorg. Chem. 2019, 58 (5), 3316-3328.

243) Barriers for Interfacial Back-Electron Transfer: A Comparison between TiO2 and SnO2/TiO2 Core/Shell Structures. Troian-Gautier, L.; Sampaio, R. N.; Piechota, E. J.; Brady, M. D.; Meyer, G. J. J. Chem. Phys. 2019, 150, 041719.

242) Entropic Barriers Determine Adiabatic Electron Transfer Equilibrium. Piechota, E. J.; Sampaio, R. N.; Troian-Gautier, L.; Maurer, A. B.; Berlinguette, C. P.; Meyer, G. J. J. Phys. Chem. C 2019, 123 (6), 3416.

241) Iodide Photoredox and Bond Formation Chemistry. Troian-Gautier, L.; Swords, W. B.; Meyer, G. J. Acc. Chem. Res. 2019, 52 (1), 170. 

240) A Charge‐Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface. Sampaio, R. N.; Troian-Gautier, L.; Meyer, G. J. Angewandte Chemie 2018, 130 (47), 15616.

239) Resolving Orbital Pathways for Intermolecular Electron Transfer. Kellett, C. W.; Swords, W. B., Turlington, M. D., Meyer, G. J.; Berlinguette, C. P. Nature Comm. 2018, 9, 4916.

238) Photophysical Properties of Tetracationic Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride. Troian-Gautier, L., Wehlin, S. A. M.; Meyer, G. J. Inorganic Chemistry2018, 57, 19, 12232-12244.

237) Oxidatively Stable Ferrocenyl-π-bridge-titanocene D–π-A Complexes: an Electrochemical and Spectroscopic Investigation of the Mixed-Valent States. 

236) Influence of 4 and 4′ Substituents on RuIII/II Bipyridyl Self-Exchange Electron Transfer Across Nanocrystalline TiO2 Surfaces. Motley, T. C.; Brady, M. D.; Meyer, G. J. J. Phys. Chem. C. 2018, 122 (34), 19385-19394.

235) Optimization of Photocatalyst Excited- and Ground-State Reduction Potentials for Dye-Sensitized HBr Splitting. Brady, M. D.; Troian-Gautier, L.; Sampaio, R. N.; Motley, T. C.; Meyer, G. J. ACS Appl. Mater. Interfaces2018, 10 (37), 31312-31323.

234) Kinetics Teach that Electronic Coupling Lowers the Free-Energy Change that Accompanies Electron Transfer. Sampaio, R. N.; Piechota, E. J.; Troian-Gautier, L.; Maurer, A. B.; Hu, K.; Schauer, P. A.; Blair, A. D.; Berlinguette, C. P.; Meyer, G. J. PNAS2018, 115 (28), 7248.

233) Ter-Ionic Complex that Forms a Bond Upon Visible Light Absorption. Wehlin, S. A. M.; Troian-Gautier, L.; Sampaio, R. N.; Marcelis, L.; Meyer, G. J. J. Am. Chem. Soc. 2018, 140 (25), 7799-7802.

232) Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces. Raber, M.; Brady, M. D.; Troian-Gautier, L.; Dickenson, J.; Marquad, S. L.; Hyde, J.; Lopez, S.; Meyer, G. J.; Meyer, T. J.; Harrison, D. J. ACS Appl. Mater. Interfaces2018, 10 (26), 22821-22833.

231) Intramolecular Electronic Coupling Enhances Lateral Electron Transfer across Semiconductor Interfaces. Motely, T. C.; Meyer, G. J. J. Phys. Chem. C. 2018, 122 (26), 14420-14424.

230) Electric Fields Detected on Dye-Sensitized TiO2 Interfaces: Influence of Electrolyte Composition and Ruthenium Polypyridyl Anchoring Group Type. Davis, V. K.; Sampaio, R. N.; Marquad, S. L.; Meyer, G. J. J. Phys. Chem. C. 2018, 122 (24), 12712-12722.

229) Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge that Follows Different Pathways. Piechota, E. J.; Troian-Gautier, L.; Sampaio, R. N.; Brenneman, M. K.; Hu, K.; Berlinguette, C. P.; Meyer, G. J. J. Am. Chem. Soc. 2018, 140 (23), 7176-7186.

228) Ligand Control of Supramolecular Chloride Photorelease. Turlington, M.D.; Troian-Gautier, L.; Sampaio, R.N.; Beauvilliers, E.E.; Meyer, G.J. Inorg. Chem. 2018, 57 (9), 5624-5631.

227) Visible Light Driven Bromide Oxidation and Ligand Substitution Photochemistry of a Ru Diimine Complex. Li, G.; Brady, M.D.; Meyer, G.J. J. Am. Chem. Soc. 2018140 (16), 5447-5456.

226) Dye Excited States Oriented Relative to TiO2 Surface Electric Fields. Ward, C. L.; DiMarco, B. N.; O’Donnell, R. M.; Meyer, G. J. J. Phys. Chem. C. 2018, 122, 13863-13871.

225) Evidence that ΔS Controls Interfacial Electron Transfer Dynamics from Anatase TiO2 to Molecular Acceptors. Troian-Gautier, L.; DiMarco, B. N.; Sampaio, R. N.; Marquad, S.; Meyer, G. J. J. Am. Chem. Soc. 2018140 (8), 3019-3029.

224) Evidence for an Electronic State at the Interface between the SnO2 Core and the TiO2 Shell in Mesoporous SnO2/TiO2 Thin Films. James, E. M.; Barr, T. J.; Meyer, G. J. ACS Appl. Energy Mater. 2018, 1 (2), 859-867.

223) Direct Photoactivation of a Nickel-Based, Water-Reduction Photocathode by a Highly Conjugated Supramolecular Chromophore. Shan, B.; Nayak, A.; Sampaio, R. N.; Eberhart, M. S.; Troian-Gautier, L.; Brennaman, M. K.; Meyer, G. J.; Meyer, T. J. Energy Environ. Sci. 2018, 11, 447-455.

222) Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore−Ru(II) Water Oxidation Catalyst Assembly on SnO2 Electrodes. Nayak, A.; Hu, K.; Roy, S.; Brennaman, M. K.; Shan, B.; Meyer, G. J.; Meyer, T. J. J. Phys. Chem. C. 2018, 122 (25), 13455-13461.

221) A High-Valent Metal-Oxo Species Produced by Photoinduced OneElectron, Two-Proton Transfer Reactivity. Hu, K.; Sampaio, R. N.; Marquad, S. L.; Brennaman, M. K.; Tamaki, Y.; Meyer, T. J.; Meyer, G. J. Inorg. Chem. 201857, 486-494.

220) Dye-Sensitized Electron Transfer from TiO2 to Oxidized Triphenylamines that Follows First-Order Kinetics. DiMarco, B.; Troian-Gautier, L.; Sampaio, R.N.; Meyer, G.J. Chem. Soc. 2018, 9, 940.

219) Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion. Bangle, R.; Sampaio, R. N.; Troian-Gautier, L.; Meyer, G. J. ACS Appl. Mater. Interfaces2018, 10 (3), 3121.

218) Spectroscopic Detection of Halogen Bonding Resolves Dye Regeneration in the Dye-Sensitized Solar Cell. Parlane, F.G.L.; Mustoe, C.; Kellett, C.W.; Simon, S.J.; Swords, W.B.; Meyer, G.J.; Kennepohl, P.; Berlinguette, C.P. Nature Comm. 20178, 1761.

217) Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores. Eberhart, M.S.; Wang, D.; Sampaio, R.N.; Marquad, S.L.; Shan, B.; Brenemman, M.K.; Meyer, G.J.; Dares, C.; Meyer, T.J. J. Am. Chem. Soc. 2017139 (45), 16248-16255.

216) Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production. Brady, M.D.; Sampaio, R.N.; Wang, D.; Meyer, T.J.; Meyer, G.J. J. Am. Chem. Soc. 2017, 139 (44), 15612-15615.

215) Excited-State Decay Pathways of Tris(bidentate) Cyclometalated Ruthenium(II) Compounds. Motley, T.C.; Troian-Gautier, L.; Brennaman, M.K.; Meyer, G.J. Inorg. Chem. 201756 (21), 13579-13592.

214) Bromide Photo-Oxidation Sensitized to Visible Light in Consecutive Ion Pairs. Li, G.; Swords, W.B.; Meyer, G.J. J. Am. Chem. Soc. 2017, 139 (42), 14983-14991.

213) Activation Energies for Electron Transfer from TiO2 to Oxidized Dyes: A Surface Coverage Dependence Correlated with Lateral Hole Hopping.  Sampaio, R.N.; DiMarco, B.N.; Meyer, G.J. ACS Energy Let. 2017, 2, 2402-2407.

212) Evidence for First-Order Charge Recombination in Dye-Sensitized Solar Cells. Barr, T.J.; Meyer, G.J. ACS Energy Let2017, 2, 2335-2340.

211) Chloride Oxidation by Ruthenium Excited-States in Solution. Wehlin, S.A.M; Troian-Gautier, L.; Li, G; Meyer, G.J. J Am Chem Soc2017139 (37), 12903-12906.

210) Alcohol-Based Sensitizer–Semiconductor Linkages Towards Improved Interfacial Electron Transfer Kinetics. Beauvilliers, E.E.; Malewschik, T.; Meyer, G.J. Chem Photo Chem20171, 1.

209) Rapid Static Sensitizer Regeneration Enabled by Ion Pairing. Casarin, L.; Swords, W.B.; Caramori, S.; Bignozzi, C.A.; Meyer, G.J. Inorg. Chem. 2017, 56 (13), 7324. 

208) Light Excitation of a Bismuth Iodide Complex Initiates I-I Bond Formation Reactions of Relevance to Solar Energy Conversion. Maurer, A.B.; Hu, K.; Meyer, G.J. J. Am. Chem. Soc. 2017, 139 (24), 8066.

207) Correlation Between Charge Recombination and Lateral Hole-Hopping Kinetics in a Series of cis-Ru(phen′)(dcb)(NCS)2 Dye-Sensitized Solar Cells. Sampaio, R.N.; Müller, A.V.; Polo, A.S.; Meyer, G.J. ACS Appl. Mater. Interfaces. 2017, 9 (39), 33446-33454.

206) Phantom Electrons in Mesoporous Nanocrystalline SnO2 Thin Films with Cation Dependant Reduction Onsets. Barr, T.J.; Sampaio, R.N.; DiMarco, B.N.; James, E.M.; Meyer, G.J. Chem Mat. 2017, 29, 3919.

205) Redox Active Ion-Paired Excited States Undergo Dynamic Electron Transfer. Troian-Gautier, L.; Beauvilliers, E.E.; Swords, W.B.; Meyer, G.J. J. Am. Chem. Soc. 2016, 138, 16815.

204) Charge Rectification at Molecular Nanocrystalline TiO2 Interfaces: Overlap Optimization To Promote Vectorial Electron Transfer. Barr, T.J.; Morris, A.J.; Taheri, A.; Meyer, G.J. J. Phys. Chem. C 2016, 120, 27173.

203) The University of North Carolina Energy Frontier Research Center: Center for Solar Fuels. House, R.L.; Heyer, C.M.; Meyer, G.J.; Papanikolas, J.M.; Meyer, T.J. ACS Energy Lett. 2016, 1, 872.

202) Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Brennaman, M.K.; Dillon, R.J.; Alibabaei, L.; Gish, M.K.; Dares, C.J.; Ashford, D.L.; House, R.L.; Meyer, G.J.; Papanikolas, J.M.; Meyer, T.J. J. Am. Chem. Soc. 2016, 138, 13085.

201) Continuous Surface Electric Field Contraction Accompanying Electron Transfer from TiO2 to Oxidized Sensitizers. Sampaio, R.N.; Li, G.; Meyer, G.J. Acs Energy Lett. 2016, 1, 846.

200) Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages. Simon, S.J.C.; Parlane, F.G.L.; Swords, W.B.; Kellett, C.W.; Du, C.; Lam, B.; Dean, R.K.; Hu, K.; Meyer, G.J.; Berlinguette, C.P. J. Am. Chem. Soc. 2016, 138, 10406.

199) Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound. Beauvilliers, E.E.; Meyer, G.J. Ionrg. Chem. 2016, 55, 7517.

198) Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule. Hu, K.; Blair, A.D.; Piechota, E.J.; Schauer, P.A.; Sampaio, R.N.; Parlane, F.G.L.; Meyer, G.J.; Berlinguette, C.P. Nature Chemistry 2016, 8, 853.

197) A Distance Dependence to Lateral Self-Exchange Across Nanocrystalline TiO2. A Comparative Study of Three Homologous RuIII/II Polypyridyl Compounds. DiMarco, B.N.; Motley, T.C.; Balok, R.S.; Li, G.; Siegler, M.A.; O’Donnell, R.M.; Hu, K.; Meyer, G.J. J. Phys. Chem. C 2016, 120, 14226.

196) Evidence for Interfacial Halogen Bonding. Swords, W.B.; Simon, S.J.C.; Parlane, F.G.L.; Dean, R.K.; Kellett, C.W.; Hu, K.; Meyer, G.J.; Berlinguette, C.P. Angew. Chem. Int. Ed. 2016, 55, 5956. Angew. Chem. 2016, 128, 6060.

195) Are we on a path to solar cells that utilize iron? Motley, T.C.; Meyer, G.J. NPG Asia Materials 2016, 8, e261.

194) Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO2. Zigler, D.F.; Morseth, Z.A.; Wang, L.; Ashford, D.L.; Brennaman, M.K.; Grumstrup, E.M.; Brigham, E.C.; Gish, M.K.; Dillon, R.J.; Alibabaei, L.; Meyer, G.J; Meyer, T.J.; Papanikolas, J.M. J. Am. Chem. Soc. 2016, 138, 4426.

193) Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). O’Donnell, R. M.; Sampaio, R. N.; Li, G.; Johansson, P.G.; Ward, C.L.; Meyer, G.J. J. Am. Chem. Soc. 2016, 138, 3891.

192) Fluorescence probes for prokaryotic and eukaryotic cells using Re (CO) 3+ complexes with an electron withdrawing ancillary ligand. Carreno, A.; Gracitua, M.; Fuentes, J.A.; Paez-Hernandez, D.; Penaloza, J.P.; Otero, C.; Preite, M.; Molins, E.; Swords, W.B.; Meyer, G.J.; Manuel Manriquez, J.; Polanco, R.; Chavez, I; Arratia-Perez, R. New J. Chem. 2016, 40, 7687.

191) Azadipyrromethene cyclometalation in neutral RuII complexes: photosensitizers with extended near-infrared absorption for solar energy conversion applications. Bessette, A.; Cibian, M.; Ferreira, J. G.; DiMarco, B. N.; Bélanger, F.; Desilets, D.; Meyer, G. J.; Hanan, G. S. Dalton. Trans. 2016, 45, 10563.

190) Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O2 Ejection and Formation of Mixed-Valent CuICuII–Superoxide Intermediates. Saracini, C.; Ohkubo, K.; Suenobu, T.; Meyer, G. J.; Karlin, K. D.; Fukuzumi, S. J. Am. Chem. Soc. 2015, 137, 15865.

189) Thermally-activated recombination in one component of (CH3NH3)PbI3/TiO2 observed by photocurrent spectroscopy. Cottingham, P.; Wallace, D. C.; Hu, K.; Meyer, G. J.; McQueen, T. M. Chem. Commun.2015, 51, 7309.

188) Cation-Dependent Charge Recombination to Organic Mediators in Dye-Sensitized Solar Cells. DiMarco, B. N.; O’Donnell, R. M.; Meyer, G. J. J. Phys. Chem. C 2015, 119, 21599.

187) Lateral Intermolecular Self-Exchange Reactions for Hole and Energy Transport on Mesoporous Metal Oxide Thin Films. Hu, K.; Meyer, G. J. Langmuir 2015, 31, 11164. *Invited submission: Feature Article*

186) Kinetic Resolution of Charge Recombination and Electric Fields at the Sensitized TiO2 Interface. Ward, C. L.; O;Donnell, R. M.; DiMarco, B. N.; Meyer, G. J. J. Phys. Chem. C 2015, 115, 25273.

185) Antenna molecule drives solar hydrogen generation. Meyer, G. J. PNAS 2015, 112. 9146.

184) Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br–Br Bond Formation. Li, G.; Ward, W. M.; Meyer, G. J. J. Am. Chem. Soc. 2015, 137, 8321.

183) Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN. Swords, W. B.; Li G.; Meyer, G. J. Inorg. Chem. 2015, 54, 4512.

182) Tris-Heteroleptic Ruthenium-Dipyrrinate Chromophores in a Dye-Sensitized Solar Cell. Li, G.; Hu, K.; Robson, K. C. D.; Gorelsky, S. I.; Meyer, G. J.; Berlinguette, C. P.; Shatruk, M. Chem. Eur. J. 2015, 21, 2173.

2010 - 2014

181) Electric Fields Control TiO2(e) + I3 → Charge Recombination in Dye-Sensitized Solar Cells. Sampaio R. N.; O´Donnell R. M.; Barr T. J.; Meyer G. J. J. Phys. Chem. Lett. 2014, 5, 3265.180) Temperature Dependent Iodide Oxidation by MLCT Excited States. Taheri, A; Meyer, G.J. Dalton Trans. 2014, 43, 17856-17863.

179) Excited state electron transfer from cobalt coordination compounds anchored to TiO2. Brigham, E. C.; Achey, D.; Meyer, G. J. Polyhedron 2014, 82. 181.

178) Direct Spectroscopic Evidence for Constituent Heteroatoms Enhancing Charge Recombination at a TiO2-Ruthenium Dye Interface. Hu, K.; Severin, H. A.; Koivisto, B. D.; Robson, K. C. D.; Schott, E.; Arratia-Perez, R.; Meyer, G. J.; Berlinguette, C.P. J. Phys. Chem. C 2014, 118, 17079. *Invited article: special issue dedicated to Michael Grätzel.*

177) High Extinction Coefficient Ru-Sensitizers Compounds that Promote Hole Transfer on Nanocrystalline TiO2. Abrahamsson, M.; Becker, H.-C.; Staniszewski, A.; Pearson, W.H.; Heuer, W.B.; Meyer, G.J. Chem. Phys. Chem. 2014, 15, 1154-1163.

176) Ostwald Isolation to Determine the Reaction Order for TiO2(e-)|S+ → TiO2|S Charge Recombination at Sensitized TiO2 Interfaces. Brigham, E. C.; Meyer, G. J. J. Phys. Chem. C 2014, 118, 7886.

175) Electric Fields and Charge Screening in Dye Sensitized Mesoporous Nanocrystalline TiO2 Thin Films. O´Donnell R. M.; Sampaio R. N.; Barr T. J.; Meyer G. J. J. Phys. Chem. C 2014, 118, 16976. *Invited article: special issue dedicated to Michael Grätzel.*

174) Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12. Achey, D.; Brigham, E. C.; DiMarco, B. N.; Meyer, G. J. Chem. Commun. 2014, 50, 13304.

173) Excitation Wavelength Dependent O2 Release from Copper(II)-Superoxide Compounds: Laser Flash-Photolysis Experiments and Theoretical Studies. Saracini, C.; Liakos, D. G.; Zapata Rivera, J. E.; Neese, F.; Meyer, G. J.; Karlin, K. D. J. Am. Chem. Soc. 2014, 136, 1260.

172) Intramolecular and Lateral Intermolecular Hole Transfer at the Sensitized TiO2 Interface. Hu, K.; Robson, K. C. D.; Beauvilliers, E. E.; Schott, E.; Zarate, X.; Arratia-Perez, R.; Berlinguette, C. P.; Meyer, G. J. J. Am. Chem. Soc. 2014, 136, 1034.

171) Donor-π-acceptor organic hybrid TiO2 interfaces for solar energy conversion. Hu, K.; Robson, K. C. D.; Berlinguette, C. P.; Meyer, G. J. Thin Solid Films 2014, 560, 49. *Invited article: special issue 2013 European Materials Research Society.*

170) Charge-Screening Kinetics at Sensitized TiO2 Interfaces. O´Donnell, R. M.; Ardo, S.; Meyer, G. J. J. Phys. Chem. Lett. 2013 , 4, 2817.

169) Ligand Coordination and Spin Crossover in a Nickel Porphyrin Anchored to Mesoporous TiO2 Thin Films. Achey, D.; Meyer, G.J. Inorg. Chem. 2013, 52, 9574.

168) Homoleptic “Star” Ru(II) Polypyridyl Complexes: Shielded Chromophores to Study Charge-Transfer at the Sensitizer-TiO2 Interface. Johansson, P. G.; Zhang, Y.; Meyer, G. J.; Galoppini, E. Inorg. Chem. 2013, 52, 7947.

167) Panchromatic Light Harvesting and Hot Electron Injection by Ru(II) Dipyrrinates on a TiO2 Surface. Li, G.; Hu, K.; Yi, C.; Knappenberger, K. L.; Meyer, G. J.; Gorelsky, S. I.; Shatruk, M. J. Phys. Chem. C 2013, 117, 17399.

166) Chloride Ion-Pairing with Ru(II) Polypyridyl Compounds in Dichloromethane. Ward, W. M.; Farnum, B. H.; Siegler, M.; Meyer, G. J. J. Phys. Chem. A 2013, 117, 8883.

165) Distance Dependent Electron Transfer at TiO2 Interfaces Sensitized with Phenylene Ethynylene Bridged RuII-Isothiocyanate Compounds. Johansson, P. G.; Kopecky, A.; Galoppini, E.; Meyer, G. J. J. Am. Chem. Soc. 2013, 135, 8331.

164) Atomic Level Resolution of Dye Regeneration in the Dye Sensitized Solar Cell. Robson, K.C.D.; Hu, K.; Meyer, G.J.; Berlinguette, C.P. J. Am. Chem. Soc. 2013, 135, 1961.

163) Excited State Relaxation of Ruthenium Polypyridyl Compounds Relevant to Dye Sensitized Solar Cells. O’Donnell, R.M.; Johansson, P.G.; Abrahamsson, M.; Meyer, G.J Inorg. Chem. 2013, 52, 6839.

162) Flash-Quench Technique Studies On the One Electron Reduction of Triiodide. Farnum, B.H.; Ward, W.M.; Meyer, G.J. Inorg. Chem. 2013, 52, 842.

161) Increase in the Coordination Number of a Cobalt Porphyrin after Photo-Induced Interfacial Electron Transfer into Nanocrystalline TiO2. Achey, D.; Ardo, S.; Meyer, G.J. Inorg. Chem. 2012, 51, 9865.

160) Intramolecular Hole Transfer at Sensitized TiO2 Interfaces. Hu, K.; Robson, K.C.D.; Johansson, P.G.; Berlinguette, C.P.; Meyer, G.J. J. Am. Chem. Soc. 2012, 134, 8352.

159) Visible Light Generation of I-I Bonds by Ru-tris(diimine) Excited-States. Farnum, B.V.; Jou, J.J.; Meyer, G.J. Proc. Nat. Acad. Sci. 2012, 109, 15628.

158) A New Dicarboxylic Acid Bipyridine Ligand for Ruthenium Polypyridyl Sensitization of TiO2. Heuer, W.B.; Xia,H.-L.; Ward, W.; Zhou, Z.;Pearson, W.H.; Siegler, M.A.; Narducci-Sarjeant, A.A.; Abrahamsson, M.; Meyer, G.J. Inorg. Chem. 2012, 51, 3981.

157) Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors. Khnayzer, R.; Thompson, L.; Zamkov, M.; Ardo, S.; Meyer, G.J.; Murphy, C.J.; Castellano, F.N. J. Phys. Chem. C 2012, 116, 1429.

156) Non-Nernstian Two-Electron Transfer Photocatalysis at Metalloporphyrin–TiO2 Interfaces. Ardo, S.; Achey, D.; Morris, A.J.; Abrahamsson, M.; Meyer, G.J. J. Am. Chem. Soc. 2011, 133, 16572.

155) Chemist’s Quest for Inexpensive, Efficient, and Stable Photovoltaics. Meyer, G.J. J. Phys. Chem. Lett. 2011, 2, 1965.

154) Long Wavelength Sensitization of TiO2 by Ru Diimine Compounds with Low-Lying π* Orbitals. Johansson, P.G.; Rowley, J.; Taheri, A.; Meyer, G.J.; Singh, S.P.; Islam, A.; Han, L. Langmuir 2011, 27, 14522.

153) Charge Recombination to Oxidized Iodide in Dye Sensitized Solar Cells. Rowley, J.G.; Ardo, S.; Sun, Y.; Castellano, F.N.; Meyer, G.J. J. Phys. Chem. C. 2011, 115, 20316.

152) Influence of Ion Pairing on the Oxidation of Iodide by MLCT Excited States. Farnum, B. H.; Gardner, J. M.; Marton, A.; Narducci-Sarjeant, A. A.; Meyer, G. J. Dalton Trans. 2011, 40, 3830.

151) Slow Photoinduced Charge Transfer from Star-Shaped Ruthenium Polypyridyl Nanostructures Anchored to Mesoporous TiO2 Thin Films. Johansson, P.G.; Zhang, Y.; Abrahamsson, M.; Meyer, G.J.; Galoppini, E., Chem. Comm. 2011, 47, 6410.

150) Characterization of Photoinduced Self-Exchange Reactions at Molecule Semiconductor Interfaces by Transient Polarization Spectroscopy: Lateral Intermolecular Energy and Hole Transfer across Sensitized TiO2 Thin Films. Ardo, S.; Meyer, G.J. J. Am. Chem. Soc. 2011, 133, 15384.

149) Homoleptic Star-Shaped Ru(II) Complexes. Zhang, Y.; Galoppini, E.; Johansson, P.G.; Meyer, G.J. Pure & Appl. Chem. 2011, 83, 861.

148) Di- and Tri- Iodide Reactivity at Illuminated Titanium Dioxide Interfaces. Rowley, J.G.; Meyer, G.J. J. Phys. Chem. C 2011, 115, 6156.

147) Sensitization of TiO2 by the MLCT Excited State of CoI Coordination Compounds. Achey, D.; Ardo, S.A.; Xia, H.-L.; Siegler, M.A.; Meyer, G.J. J. Phys. Chem. Lett. 2011, 2, 305.

146) Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy. Gardner, J.; Kim, S.; Searson. P.C.; Meyer, G.J. J. Nanomater. 2011, Article ID 737812, 1.

145) Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking I-I Bonds for Solar Energy Conversion. Rowley, J.G.; Farnum, B.H.; Ardo, S.; Meyer, G.J. J. Phys. Chem. Lett. 2010, 1, 3132.

144) Flash-Quench Technique Employed to Study the One Electron Reduction of Triiodide in Acetonitrile: Evidence for a Diiodide Reaction Product. Farnum, B.H.; Gardner, J.M.; Meyer, G.J. Inorg. Chem. 2010, 49, 10223.

143) Photoinduced Electron Transfer from Ru Am(m)ine Compounds with Low-Lying Ligand Field Excited States to Nanocrystalline TiO2. Xai, H.-L.; Liu, F.; Ardo, S.; Narducci Sarjeant, A.A,; Meyer, G.J. J. Photochem. & Photobiol. A:Chemistry 2010, 216, 94.

142) Excited-State Electron Transfer from Ruthenium Polypyridyl Compounds to Metal-Oxide Nanocrystallites: Evidence for a Stark Effect. Ardo, S.; Staniszewski, A.; Sun, Y.; Castellano, F.N.; Meyer, G.J. J. Phys. Chem. B 2010, 114, 14596. *Invited article: special issue dedicated to Professor M. Wasielewski.*

141) The 2010 Millenium Technology Grand Prize: Dye Sensitized Solar Cells. Meyer, G.J. ACS Nano 2010, 4,4337.

140) Direct Observation of Photo-Initiated Hole Transfer: Self-Exchange and Catalyst Oxidation Reactions Between Molecules Anchored to Metal-Oxide Nanocrystallites. Ardo, S.A.; Meyer, G.J. J. Am. Chem. Soc. 2010, 132, 9283.

139) Reaction of RuII Diazafluorenone Compound with Nanocrystalline TiO2 Thin Film. Heuer, W.B.; Xia, H.-L.;Abrahamsson, M.; Zhou, Z.; Ardo, S.; Narducci Sarjeant, A.A.; Meyer, G.J. Inorg. Chem. 2010, 49, 7726.

138) Decreased Interfacial Charge Recombination Rate Constants with N3-type Sensitizers. Abrahamsson, M.; Kopecky, A.; Johansson, P.G.; Galoppini. E.; Meyer, G.J. J. Phys. Chem. Lett. 2010, 1, 1725.

137) Kinetic and Thermodynamics of CO and O2 Binding to Pseudo-Tetradentate Ligand-Copper(I)-Complexes with a Variable N-Donor Moiety. Lucas, H.R.; Meyer, G.J.; Karlin, K.D. J. Am. Chem. Soc. 2010, 132, 12927.

136) Stark-like Effects after Excited State Interfacial Electron Transfer at Sensitized TiO2 Nanocrystallites. Ardo, S.; Staniszewski, A.; Sun, Y.; Castellano, F.N.; Meyer, G.J. J. Am. Chem. Soc. 2010, 132, 6696.

135) Dynamics and Equilibrium of Heme Axial Ligation in Mesoporous Nanocrystalline TiO2 Thin Films. Morris, A.J.; Stromberg, J.R.; Meyer, G.J. Inorg. Chem. 2010, 49, 29.

2005 - 2009

134) Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Morris, A.J.; Meyer, G.J.; Fujita, E. Acc. Chem. Res. 2009, 42, 1983.

133) Reduction of I2/I3 by Titanium Dioxide. Rowley, J.; Meyer, G.J. J. Phys. Chem. C 2009, 113, 18444.

132) Photodriven Spin Change of Fe(II) Benzimidazole Compounds Anchored to Nanocrystalline TiO2 Thin Films. Xai, H.-L.; Ardo, S.; Narducci Sarjeant, A.A,; Huang, S.; Meyer, G.J. Langmuir 2009, 25, 13641.

131) Visible Light Generation of Iodine Atoms and I−I Bonds: Sensitized I− Oxidation and I3− Photodissociation. Gardner, J.M.; Abrahamsson, M.; Farnum, B.H.; Meyer, G.J. J. Am. Chem. Soc. 2009, 131, 16206.

130) Meta-Substituted RuII Rigid Rods for Sensitization of TiO2. Abrahamsson, M.; Taratula, O.; Persson, P. Galoppini. E.; Meyer, G.J. J. Photochem. & Photobiol, A:Chemistry 2009, 206, 155.

129) Large Footprint Pyrene Chromophores Anchored to Planar and Colloidal Metal Oxide Thin Films. Thyagarajan, S.; Galoppini, E.; Persson, P.; Giaimuccio, J.M.; Meyer, G.J. Langmuir 2009, 25, 9219.

128) Carbon Monoxide and Nitrogen Monoxide Ligand Dynamics in Synthetic Heme and Heme-Copper Complex Systems. Lucas, H.R.; Meyer, G.J. Karlin, K.D. J. Am. Chem. Soc. 2009, 131, 13924.

127) Photodriven Heterogeneous Charge Transfer with Transition-Metal Compounds Anchored to TiO2 Semiconductor Surfaces. Ardo, S.; Meyer, G.J. Chem. Soc. Rev. 2009, 38, 115.

126) Evidence for Iodine Atoms as Intermediates in the Dye Sensitized Formation of I-I Bonds. Gardner, J.M.; Giaimuccio, J.M.; Meyer, G.J. J. Am. Chem. Soc. 2008, 130, 17252.

125) Singlet Oxygen Chemistry in Water. 2. Photoexcited Sensitizer Quenching by O2 at the Water-Porous Glass Interface. Giaimuccio, J.M.; Zamadar, M.; Aebisher, D. Meyer, G.J. Greer, A. J. Phys. Chem. B. 2008, 112, 15646.

124) Slow Cation Transfer Rate Follows Sensitizer Regeneration at TiO2 Interfaces. Staniszewski, A.; Ardo, S.; Sun, Y.; Castellano, F.N.; Meyer, G.J. J. Am. Chem. Soc. 2008, 130, 11586.

123) Halide Coordination to Zinc Porphyrin Sensitizers Anchored to Nanocrystalline TiO2. Morris, A.J.; Marton, A.; Meyer, G.J. Inorg. Chem. 2008, 47, 7681.

122) TiO2 Surface Functionalization to Control the Density of States. Morris, A.J.; Meyer, G.J. J. Phys. Chem. C. 2008, 112, 18224.

121) High-Extinction Ruthenium Compounds for Sun Light Harvesting and Hole Transport. Staniszewski, A.; Heuer, W.B.; Meyer, G.J. Inorg. Chem. 2008, 47, 7062. *Selected for Cover of Issue.*

120) Intermolecular versus intramolecular electron-/atom- (Cl) transfer in heme-iron and copper pyridylalkylamine complexes. Fry, H.C.; Lucas, H.R.; Zakharov, L.N.; Rheingold., A.L.; Karlin, K.D.; Meyer, G.J. Inorg. Chim. Acta 2008, 361, 1100. *Invited article: special issue dedicated to Professor E.I. Solomon.*

119) Interfacial Electron Transfer on TiO2 with Axially Anchored TRANS Tetradentate Ru(II) Polypyridyl Compounds. Delgadillo, A.; Gajardo, F.; Leiva, A.-M.; Loeb, B; Stromberg, J.S.; Meyer, G.J. Inorg. Chim. Acta 2008, 361, 613. (Invited article for special issue dedicated to Professor Michael Grätzel.)

118) Carbon Monoxide Coordination and Reversible Photodissociation in Copper(I) Pyridylalkylamine Compounds. Fry, H.C.; Lucas, H.R.; Narducci-Sarjeant, A.A.; Karlin, K.D.; Meyer, G.J. Inorg. Chem. 2008, 47, 241.

117) Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells. Stromberg, J.R.; Marton, A.; Ling Kee, H.; Kirmaier, C.; Diers, J.R.; Muthiah, C.; Taniguchi, M.; Lindsey, J.R.; Bocian, D.F.; Meyer, G.J., Holten, D. J. Phys. Chem. C 2007, 111, 15464.

116) Heavy Atom Effects on Anthracene-Rigid-Rod Excited States Anchored to Metal Oxide Nanoparticles. Giaimuccio, J.M.; Rowley, J.G.; Meyer, G.J.; Wang, D.; Galoppini, E. Chem. Phys. 2007, 339, 146.

115) Conduction Band Mediated Electron Transfer Across Nanocrystalline TiO2 Surfaces. Staniszewski, A.; Morris, A.J.; Meyer, G.J. J. Phys. Chem. B. 2007, 24, 6822. *Invited article: special issue dedicated to Dr. Norman Sutin.*

114) Chemistry for a Sustainable Future. Grassian,V.; Meyer, G.J.; Abruña, H.; Achenie, L.E.; Allison, T.; Brunschwig, B.; Coates, G.; Ferry, J.L.; Garcia-Garibay, M.; Gardea-Torresdey, J.; Grey, C.; Hutchison, J.; Li, C.-J.; Liotta, C.; Minteer, S.; Mueller, K.; Ragauskas, A.; Roberts, J.; Sadik, O.; Schmehl, R.; Schneider, W.; Selloni, A.; Stair, P.; Stewart, J.; Tyson, J.; Voelker, B.; White, J.M.; Wood-Black, F.;Thorn, D. Env. Sci. & Technol. 2007, 41, 4840.

113) Unexpected Ultrafast Structural Rearrangements in the MLCT Excited State of Copper(I) bis-Phenanthrolines in Solution. Shaw, G.B.; Grant, C.D.; Castner, E.W.; Meyer, G.J.; Chen, L.C J. Am. Chem. Soc. 2007, 129, 2147.

112) Calculated Optoelectronic Properties of Ruthenium tris-bipyridine Dyes Containing Oligophenyleneethynylene Rigid Rod Linkers in Different Chemical Environments. Lundqvist, M.J.; Galoppini, E.; Meyer, G.J. Persson, P. J. Phys. Chem. A. 2007, 111, 1487.

111) Heme Mediated Reduction of Organohalide Pollutants at Nanocrystalline TiO2 Thin Film Interfaces. Ito, T.; Meyer, G.J. Environ. Eng. Science 2007, 24, 31.

110) Preferential Noncovalent Protein Adsorption onto Hydrophobic Segments of Multi-Functional Metallic Nanowires. Fond, A.M.; Birenbaum, N.S.; Felton, E.J.; Reich, D.H.; Meyer, G.J. J. Photochem. Photobiol. A 2007, 186, 57.

109) Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene-Porphyrin Light-Harvesting Arrays. Hasselman, G.M.; Watson, D.F.; Stromberg, J.; Bocian, D.F.; Holten, D.; Lindsey, J.S.; Meyer, G.J. J. Phys. Chem. B. 2006, 110, 25430. *Invited article: special issue dedicated to Dr. A.J. Nozik.*

108) Pyrene-Terminated Phenylenethynylene Rigid Linkers Anchored to Metal Oxide Nanoparticles. Taratula, O.; Rochford, J.; Piotrowiak, P.; Galoppini, E.; Carlisle, R.A.; Meyer, G.J. J. Phys. Chem. B. 2006, 110, 15734.

107) Multi-electron Transfer at Heme Functionalized Nanocrystalline TiO2: Reductive Dechlorination of DDT and CCl4 forms Stable Carbene Compounds. Stromberg, J.R.; Wnuk, J.; Pinlac, R.A.F.; Meyer, G.J. Nano Lett. 2006, 6, 1284.

106) Tuning Open Circuit Photovoltages with Tripodal Sensitizers. Clark, C.C.; Meyer, G.J.; Wei, Q.; Galoppini, E. J. Phys. Chem. B 2006, 110, 11044.

105) Triiodide Quenching of Ruthenium MLCT Excited State in Solution and on TiO2 Surfaces: An Alternate Pathway for Charge Recombination. Clark, C.C.; Marton, A.; Srinivasan, R.; Narducci Sarjeant, A.A.; Meyer, G.J. Inorg. Chem. 2006 45, 4728.

104) Towards Exceeding the Shockley-Queisser Limit: Photo-Induced Interfacial Charge Transfer Processes that Store Energy in Excess of the Equilibrated Excited State. Hoertz, P.G.; Staniszewski, A.; Marton, A; Higgins, G.T.; Incarvito, C.D.; Rheingold, A.L.; Meyer, G.J. J. Am. Chem. Soc. 2006, 128, 8234.

103) An Interfacial Charge Transfer Switch: Ruthenium-dppz Compounds Anchored to Nanocrystalline TiO2. Delgadillo, A.; Arias, M.; Leiva, A.M.; Loeb, B; Meyer, G.J. Inorg. Chem. 2006, 45, 5721.

102) Static and Dynamic Quenching of Ru(II) Polypyridyl Excited States by Iodide. Marton, A.; Clark, C.C.; Srinivasan, R.; Freundlich, R.E.; Narducci Sarjeant, A.A.; Meyer, G.J. Inorg. Chem. 2006, 45, 362.

101) Intermolecular Energy Transfer Across Nanocrystalline Semiconductor Surfaces. Higgens, G.T.; Bergeron, B.V.; Hasselmann, G.M.; Farzad, F.; Meyer, G.J. J. Phys. Chem. B 2006, 110, 2598.

100) Multi-electron Transfer from Heme Functionalized Nanocrystalline TiO2 to Trichlororethylene. Obare, S.O.; Ito, T.; Meyer, G.J. J. Am. Chem. Soc. 2006, 128, 712.

99) Remote and Adjacent Excited-State Electron Transfer at TiO2 Interfaces Sensitized to Visible Light with Ru(II) Compounds. Liu, F.; Meyer, G.J. Inorg. Chem. 2005, 44, 9305.

98) Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces. Meyer, G.J. Inorg. Chem. 2005, 44, 6852.

97) Photoinduced Carbon Monoxide Migration in a Synthetic Heme-Copper Complex. Fry, H.C.; Cohen, A.D.; Toscano, J.P.; Karlin, K.D.; Meyer, G.J. J. Am. Chem. Soc. 2005, 127, 6225.

96) Evidence for Static Quenching of MLCT Excited States by Iodide. Clark, C.C.; Marton, A.; Meyer, G.J. Inorg. Chem. 2005, 44, 3383.

95) Controlling Reduction Potentials of Semiconductor-Supported Molecular Catalysts for Environmental Remediation of Organohalide Pollutants. Obare, S.O.; Ito, T.; Meyer, G.J. Env. Sci. & Technol. 2005, 39, 6266.

94) Electron Injection at Dye-Sensitized Semiconductor Electrodes. Watson, D.F.; Meyer, G.J. Ann. Rev. Phys. Chem. 2005, 56, 119.

93) Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators. Bergeron, B.V.; Marton, A.; Oskam, G.; Meyer, G.J. J. Phys. Chem. B 2005, 109, 935.

92) A Nuclear Isotope Effect for Excited State Electron Transfer Across Semiconductor Interfaces. Liu, F.; Meyer, G.J. J. Am. Chem. Soc. 2005, 127, 824.

2000 - 2004

91) Photochemical Organic Oxidations and Dechlorinations with a π-Oxo Bridged Heme/Non-Heme Diiron Complex. Wasser, I.M.; Fry, H.C.; Hoertz, P.G.; Karlin, K.D.; Meyer, G.J. Inorg. Chem. 2004, 43, 8272.

90) Sensitization and Stabilization of TiO2 Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes: A Stable Aqueous Photoelectrochemical Cell. Moss, J.A.; Yang, J.C.; Stipkala, J.M.; Wen, X.; Bignozzi, C.A.; Meyer, T.J.; Meyer, G.J. Inorg. Chem. 2004, 43, 1784.

89) Efficient Photodissociation of O2 from Synthetic Heme and Heme/M (M = Fe, Cu) Complexes. Fry, H.C.; Hoertz, P.G.; Wasser, I.M.; Karlin, K.D.; Meyer, G.J. J. Am. Chem. Soc. 2004, 126, 16712.

88) Excited State Electron Transfer from Ru(II) Polypyridyl Compounds Anchored to Nanocrystalline TiO2 Through Rigid-Rod Linkers. Wang, D.; Galoppini, E.; Hoertz, P.G.; Carlisle, R.A.; Meyer, G.J. J. Phys. Chem. B. 2004, 108, 16642.

87) Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2. Watson, D.F.; Marton, A.; Stux, A.M.; Meyer, G.J. J. Phys. Chem. B 2004, 108, 11680.

86) Nanostructured Materials for Environmental Remediation of Organic Contaminants in Water. Obare, S.O.; Meyer, G.J. J. Environ. Science and Health A 2004, A39, 2549.

85) Biological Applications of High Aspect Ratio Nanoparticles. Bauer, L.A.; Birenbaum, N.S.; Meyer, G.J. J. Mater. Chem. 2004, 14, 517.

84) Cation Effects in Nanocrystalline Solar Cells. Watson, D.F.; Meyer, G.J. Coord. Chem. Rev. 2004, 248, 1391.

83) Ferrous Hemin Oxidation by Organohalides at Nanocrystalline TiO2 Interfaces. Obare, S.O.; Ito, T.; Balfour, M.H.; Meyer, G.J. Nanolett. 2003, 3, 1151.

82) Selective Non-Covalent Adsorption of Protein to Bifunctional Metallic Nanowire Surfaces. Birenbaum, N.; Lai, B.T.; Chen, C.S.; Reich, D.H.; Meyer, G.J. Langmuir 2003, 19, 9580.

81) Insights into Dye-Sensitization of Planar TiO2: Evidence for Involvement of a Protonated Surface State. Watson, D.F.; Marton, A.; Stux, A.M.; Meyer, G.J. J. Phys. Chem. B 2003, 107, 10971.

80) Excited State Interfacial Electron Transfer from a Compound with a Single Pyridine Ligand. Liu, F.; Meyer, G.J. Inorg. Chem. 2003, 42, 7351.

79) Selective Functionalization of Two-Component Magnetic Nanowires. Bauer, L.A.; Reich, D.H.; Meyer, G.J. Langmuir 2003, 19, 7043.

78) The Rate of O2 and CO Binding to a Copper Complex Exceeds that for Hemes. Fry, H.C.; Scaltrito, D.V.; Karlin, K.D.; Meyer, G.J. J. Am. Chem. Soc. 2003, 125, 11866.

77) Subpicosecond Photoinduced Charge Injection from “Molecular Tripods” into Mesoporous TiO2 Over the Distance of 24 Å. Piotrowiak, P.; Galoppini, E.; Wei, Q.; Meyer, G.J.; Wiewiór, P. J. Am. Chem. Soc. 2003, 125, 5278.

76) Organic Rigid-Rod Linkers for Coupling Chromophores to Metal Oxide Nanoparticles. Hoertz, P.G.; Carlisle, R.A.; Meyer, G.J.; Wang, D.; Piotrowiak, P.; Galloppini, E. Nanolett. 2003, 3, 325.

75) Thin Film Actinometers for Nanosecond Transient Absorption: Applications to Dye-Sensitized Solar Cells. Bergeron, B.V.; Kelly, C.A.; Meyer, G.J. Langmuir 2003, 19, 8389.

74) MLCT State Structure and Dynamics of a Cu(I) Diimine Complex Characterized by Pump-probe X-ray and Laser Spectroscopies and DFT Calculations. Chen, L.X.; Shaw, G.B.; Liu, T.; Jennings, G.; Attenkofer, K.; Meyer, G.J.; Coppens, P. J. Am. Chem. Soc. 2003, 125, 7022.

73) Cell Manipulation using Magnetic Nanowires. Hultgren, A.; Tanase, M.; Chen, C.S.; Meyer, G.J.; Reich, D.H. J. Appl. Phys. 2003, 93, 7554.

72) Biological Applications of Multifunctional Magnetic Nanowires. Reich, D.H.; Bauer, L.A.; Tanase, M.; Hultgren, A.; Chen, C.S.; Meyer, G.J. J. Appl. Phys. 2003, 93, 7275.

71) Reductive Electron Transfer Quenching of MLCT Excited States Bound to Semiconductor Surfaces. Bergeron, B.V.; Meyer, G.J. J. Phys. Chem. B 2003, 107, 245.

70) Synthesis, Characterization, and Laser Flash Photolysis Reactivity of a Reduced Carbonmonoxy Heme Complex. Thompson, D.W.; Lebeau, E.L.; Kretzer, R.M.; Lam, K.-C.; Rheingold, A.L.; Karlin, K.D.; Meyer, G.J. Inorg. Chem. 2003, 42, 5211.

69) Molecular Control of Photo-Induced Electron and Energy Transfer at Nanocrystalline Semiconductor Interfaces. Meyer, G.J. J. Photochem. Photobiol. A: Chem. 2003, 158, 119.

68) Rapid Excited State Structural Reorganization Captured by Pulsed X-Rays. Chen, L.X.; Jennings, G.; Liu, T.; Gosztola, D.J.; Hessler, J.P.; Scaltrito, D.V.; Meyer, G.J. J. Am. Chem. Soc. 2002, 124, 10861.

67) Ligand-Localized Electron Trapping at Sensitized Semiconductor Interfaces. Hoertz, P.G.; Thompson, D.W.; Friedman, L.A.; Meyer, G.J. J. Am. Chem. Soc. 2002, 124, 9690.

66) Electrodeposited Magnetic Nanowires: Arrays, Field-Induced Assembly, and Surface Functionalization. Chien, C.L.; Sun, L.; Tanase, M.; Bauer, L.A.; Hultgren, A.; Silevitch, D.M.; Meyer, G.J.; Searson, P.C.; Reich, D.H. J. Magn. Magn. Mater. 2002, 249, 146.

65) Magnetic Trapping and Self-Assembly of Multicomponent Nanowires. Tanase, M.; Hultgren, A.; Silevitch, D.M.; Bauer, L.A.; Reich, D.H.; Searson, P.C.; Meyer, G.J. J. Appl. Phys. 2002, 91, 8549.

64) Long-Range Electron Transfer Across Molecule-Nanocrystalline Semiconductor Interfaces Using Tripodal Sensitizers. Galoppini, E.; Guo, W.; Hoertz. P.; Qu, P.; Meyer, G.J. J. Am. Chem. Soc. 2002, 124, 7801.

63) Solvatochromic Dye Sensitized Nanocrystalline Solar Cells. Argazzi, R.; Bignozzi, C.A.; Yang, M.; Hasselmann, G.M.; Meyer, G.J. NanoLett. 2002, 2, 625.

62) Sensing Alkali and Alkaline Earth Cations by Conduction Band Quenching of Dye Photoluminescence. Stux, A.M.; Meyer, G.J. J. Fluoresc. 2002, 12, 419.

61) Charge-Transfer Studies of Iron Cyano Compounds Bound to Nanocrystalline TiO2 Surfaces. Yang, M.; Thompson, D.W.; Meyer, G.J. Inorg. Chem. 2002, 41, 1254.

60) Reversible Carbon Monoxide Photodissociation from Cu(I) Coordination Compounds. Scaltrito, D.V.; Fry, H.C.; Showalter, B.M.; Thompson, D.W.; Liang, H.-C.; Zhang, C.X.; Kretzer, R.M.; Kim, E.; Toscano, J.P.; Karlin, K.D.; Meyer, G.J. Inorg. Chem. 2001, 40, 4514.

59) Crowded Cu(I) Complexes Involving Benzo[h]quinoline: π-Stacking Effects and Long Lived Excited States. Riesgo, E.C.; Hu, Y.-Z.; Bouvier, F.; Thummel, R.P.; Scaltrito, D.V.; Meyer, G.J. Inorg. Chem. 2001, 40, 3413.

58) Influence of Organic Capping Ligands on the Growth Kinetics of ZnO Nanoparticles. Wong, E.M.; Hoertz, P.; Liang, C.J.; Shi, B.M.; Searson, P.C.; Meyer, G.J. Langmuir 2001, 17, 8362.

57) Proton Controlled Electron Injection from Molecular Excited States to the Empty States in Nanocrystalline TiO2. Qu, P.; Meyer, G.J. Langmuir 2001, 17, 6720.

56) Magnetic Alignment of Fluorescent Nanowires. Tanase, M.; Bauer, L.A.; Hultgren, A.; Silevitch, D.M.; Sun, L.; Reich, D.H.; Searson, P.C.; Meyer, G.J. NanoLett 2001, 1, 155.

55) Long Distance Electron Transfer Across Molecular-Nanocrystalline Semiconductor Interfaces. Galoppini, E.; Guo, W.; Qu, P.; Meyer, G.J. J. Am. Chem. Soc. 2001, 123, 4342.

54) Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. Oskam, G.; Bergeron, B.V; Meyer, G.J.; Searson, P.C. J. Phys. Chem. B 2001, 105, 6867.

53) Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Bignozzi, C.A.; Costa, E.; Alebbi, M.; Gillaizeau-Gauthier, I.; Odobel, F.; Qu, P.; Meyer, G.J. Inorg. Chem. 2001, 40, 6073.

52) Excited State Processes at Sensitized Semiconductor-Interfaces Characterized by Nanosecond Absorption Spectroscopy. Kelly, C.A.; Meyer, G.J. Coord. Chem. Rev. 2001, 211, 295. *Invited review: special issue dedicated to Arthur Adamson.*

51) Tuning Charge Recombination Rate Constants Through Inner-Sphere Coordination in a Copper(I) Donor-Acceptor Compound. Scaltrito, D.V.; Kelly, C.A.; Ruthkosky, M.; Thompson, D.W.; Meyer, G.J. Inorg. Chem. 2000, 39, 3777.

50) Dual Pathways of TiO2 Sensitization by Na2[Fe(bpy)(CN)4]. Yang, M.; Thompson, D.W.; Meyer, G.J. Inorg. Chem. 2000, 39, 3738.

49) MLCT Excited States of Cuprous Bis-Phenanthroline Coordination Compounds. Scaltrito, D.V.; Thompson, D.W.; O’Callahan, J.A.; Meyer, G.J. Coord. Chem. Rev. 2000, 208, 243.

48) Temperature-Dependent Electron Injection from Ru(II) Polypyridyl Compounds with Low Lying Ligand Field States to Titanium Dioxide. Qu, P.; Thompson, D.W.; Meyer, G.J. Langmuir 2000, 16, 4662.

47) Molecular Rectification by a Bimetallic Ru-Os Compound Anchored to Nanocrystalline TiO2. Kleverlaan. C.J.; Alebbi, M.; Argazzi, R.; Bignozzi, C.A.; Hasselmann, G.M.; Meyer, G.J. Inorg. Chem. 2000, 39, 1342.

46) Stepwise Charge Separation in Heterotriads: Binuclear Rh(III) Complexes on Nanocrystalline Titanium Dioxide. Kleverlaan, C.J.; Indelli, M.T.; Bignozzi, C.A.; Pavanin, L.; Scandola, F.; Hasselmann, G.M.; Meyer, G.J. J. Am. Chem. Soc. 2000, 122, 2840.

45) Electron Injection, Recombination and Halide Oxidation Dynamics at Dye-sensitized TiO2 Interfaces. Heimer, T.A.; Heilweil, E.J.; Bignozzi, C.A.; Meyer, G.J. J. Phys. Chem. A 2000, 104, 4256.

1995 - 1999

44) Remote Interfacial Electron Transfer Process on Nanocrystalline TiO2 Sensitized with Polynuclear Complexes. Bignozzi, C.A.; Alebbi, M.; Costa, E.; Kleverlaan, C.J.; Argazzi, R.; Meyer, G.J. Int. J. Photoenergy 1999, 1, 1.

43) Diffusion-Limited Interfacial Electron Transfer With Large Apparent Driving Forces. Hasslemann, G.M.; Meyer, G.J. J. Phys. Chem. B 1999, 103, 7671.

42) Competitive Intermolecular Energy Transfer and Electron Injection at Sensitized Semiconductor Interfaces. Farzad, F.; Thompson, D.W.; Kelly, C.A.; Meyer, G.J. J. Am. Chem. Soc. 1999, 121, 5577.

41) Cation Controlled Interfacial Charge Separation in Sensitized Nanocrystalline TiO2 Photoanodes. Kelly, C.A.; Thompson, D.W.; Farzad, F.; Stipkala, J.M.; Meyer, G.J. Langmuir 1999, 15, 7047.

40) Sensitization of Nanocrystalline TiO2 by Re(I) Polypyridyl Compounds. Hasselmann, G.M.; Meyer, G.J. Zeit. Phys. Chem. 1999, 212, 39.

39) Excited State Deactivation of Ruthenium(II) Polypyridyl Chromophores Bound to Nanocrystalline TiO2 Mesoporous Films. Kelly, C.A.; Thompson, D.W.; Farzad, F.; Meyer, G.J. Langmuir 1999, 15, 731.

38) Sensitization of Nanocrystalline TiO2 Initiated by Reductive Quenching of Molecular Excited States. Thompson, D.W.; Kelly, C.A.; Farzad, F.; Meyer, G.J. Langmuir 1999, 15, 650. *Invited manuscript: special issue Electrochemistry on Nanostructured Materials.*

37) Efficient Light-to-Electrical Energy Conversion With Dithiocarbamate-Ruthenium Polypyridyl Sensitizers. Argazzi, R.; Bignozzi, C.A.; Hasselmann, G.M.; Meyer, G.J. Inorg. Chem. 1998, 37, 4533.

36) Sensitization of Nanocrystalline TiO2 Films by Electropolymerized Thin Films. Moss, J.A.; Stipkala, J.M.; Yang, J.C.; Bignozzi, C.A.; Meyer, G.J.; Meyer, T.J. Wen, X.; Linton, R.W. Chem. Mater. 1998, 10, 1748.

35) Electron and Energy Transfer from CuI MLCT Excited States. Ruthkosky, M.; Castellano, F.N.; Kelly, C.A.; Meyer, G.J. Coord. Chem. Rev. 1998, 171, 309.

34) The Limiting Role of Iodide Oxidation in cis-Os(dcb)2(CN)2/TiO2 Photoelectrochemical Cells. Alebbi, M.; Bignozzi, C.A.; Heimer, T.A.; Hasselmann, G.M.; Meyer, G.J. J. Phys. Chem B 1998, 102, 7577.

33) Long-lifetime Ru(II) Complexes for the Measurement of High Molecular Weight Protein Hydrodynamics. Szmacinski, H.; Castellano, F.N.; Terpetsching, E.; Dattelbaum, J.D.; Lakowicz, J.R.; Meyer, G.J. Biochim, Biophys. Acta 1998, 1383, 151.

32) Long-Lifetime Metal Ligand Complexes as Luminescent Probes for DNA. Malak, H.; Gryszynski, I.; Lakowicz, J.R.; Castellano, F.N.; Meyer, G.J. J. Fluoresc. 1997, 7, 107.

31) Long-Lived Charge Separated States Following Light Excitation of Cu(I) Donor-Acceptor Compounds. Ruthkosky, M.; Kelly, C.A.; Castellano, F.N.; Meyer, G.J. J. Am. Chem. Soc. 1997, 119, 12004.

30) Light Induced Charge Separation at Sensitized Sol-Gel Processed Semiconductors. Stipkala, J.M.; Heimer, T.A.; Livi, K.J.T.; Meyer, G.J. Chem. Mater. 1997, 9, 2341.

29) Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers. Meyer, G.J. J. Chem. Ed. 1997, 74, 652.

28) Light-Induced Charge Separation Across Ru(II)-Modified Nanocrystalline TiO2 Interfaces with Phenothiazine Donors. Argazzi, R.; Bignozzi, C.A.; Heimer, T.A.; Castellano, F.N.; Meyer, G.J. J. Phys. Chem. B 1997, 101, 2591.

27) Remote Interfacial Electron Transfer from Supramolecular Sensitizers. Argazzi, R.; Bignozzi, C.A.; Heimer, T.A.; Meyer, G.J. Inorg. Chem. 1997, 36, 2.

26) Light-Induced Processes in Molecular Gel Materials. Castellano, F.N.; Meyer, G.J. Prog. Inorg. Chem. 1997, 44, 167.

25) Photodriven Electron and Energy Transfer from Copper Phenanthroline Excited States. Ruthkosky, M.; Castellano, F.N.; Meyer, G.J. Inorg. Chem. 1996, 35, 6406.

24) Electron Transport Properties in Porous Nanocrystalline TiO2 Photoelectrochemical Cells. Cao, F.; Oskam, G.; Searson, P.C.; Meyer, G.J. J. Phys. Chem. 1996, 100, 17021.

23) Dynamic Quenching of Porous Silicon Excited States. Ko, M.C.; Meyer, G.J. Chem. Mater. 1996, 8, 2686.

22) Luminescence of Charge Transfer Sensitizers Anchored to Metal Oxide Nanoparticles. Heimer, T.A.; Meyer, G.J. J. Lumin. 1996, 70, 468.

21) An Acetylacetonate-Based Semiconductor-Sensitizer Linkage. Heimer, T.A.; D’Arcangelis, S.T.; Farzad, F.; Stipkala, J.M.; Meyer, G.J. Inorg. Chem. 1996, 35, 5319.

20) Long-Lived Photoinduced Charge Separation Across Nanostructured TiO2 Interfaces. Argazzi, R.; Bignozzi, C.A.; Heimer, T.A.; Castellano, F.N.; Meyer, G.J. J. Am. Chem. Soc. 1995, 117, 11815.

19) Photosensitization of Wide Bandgap Semiconductors with Antennae Molecules. Bignozzi, C.A.; Argazzi, R.; Schoonover, J.R.; Meyer, G.J.; Scandola, F. Sol. Energy Mater. Sol. Cells 1995, 38, 187.

18) Dynamic Electron Transfer in Aquo- and Alco- SiO2 Gels. Castellano, F.N.; Meyer, G.J. J. Phys. Chem. 1995, 99, 14742.

17) Electrical and Optical Properties of Porous Nanocrystalline TiO2 Films. Cao, F.; Oskam, G.; Searson, P.C.; Stipkala, J.; Farzhad, F.; Heimer, T.A.; Meyer, G.J. J. Phys. Chem. 1995, 99, 11974.

16) DNA Dynamics Observed with Long Lifetime Metal-Ligand Complexes. Lakowicz, J.R.; Malak, H.; Gryczynski, I.; Castellano, F.N.; Meyer, G.J. Biospectroscopy 1995, 1, 163.

15) Dynamic Quenching of Porous Silicon Photoluminescence by Anthracene and 10-Methylphenothiazine. Ko, M.C.; Meyer, G.J. Chem Mater. 1995, 7, 12.

14) Photodriven Energy Transfer from Cuprous Phenanthroline Derivatives. Castellano, F.N.; Ruthkosky, M.; Meyer, G.J. Inorg. Chem. 1995, 34, 3.

1990 - 1994

13) Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Photovoltaic Devices. Argazzi, R.; Bignozzi, C.A.; Heimer, T.A.; Castellano, F.N.; Meyer, G.J. Inorg. Chem. 1994, 33, 5741.

12) Spectroscopic and Excited-State Properties of Titanium Dioxide Gels. Castellano, F.N.; Stipkala, J.M.; Friedman, L.A.; Meyer, G.J. Chem. Mater. 1994, 6, 2123.

11) Photophysical Properties of Ruthenium Polypyridyl Photonic SiO2 Gels. Castellano, F.N.; Heimer, T.A.; Thandasetti, M.; Meyer, G.J. Chem. Mater. 1994, 6, 1041.

10) Molecular Level Electron Transfer and Excited State Assemblies on the Surfaces of Metal Oxides and Glass. Meyer, T. J.; Meyer, G.J.; Pfenning, B.; Schoonover, J. R.; Timpson, C.; Wall, J.F.; Kobusch, C.; Chen, X.; Peek, B.M.; Wall, C.G.; Ou, W.; Erickson, B. W.; Bignozzi, C.A. Inorg. Chem. 1994, 33, 3952.

9) Molecular Level Photovoltaics: The Electro-Optical Properties of Metal Cyanide Complexes Anchored to Titanium Dioxide. Heimer, T.A.; Bignozzi, C.A.; Meyer, G.J. J. Phys. Chem. 1993, 97, 11987.

8) Photoelectrochemical Solar Energy Conversion at Nanostructured Materials. Meyer, G.J.; Searson, P.C. Interface 1993, 2, 23.

7) Synthesis of Redox Derivatives of Lysine and Related Peptides Containing Phenothiazine or Tris(2,2′-bipyridine)ruthenium(II). Peek, B.M.; Ross, G.T.; Edwards, S.W.; Meyer, G.J.; Meyer, T.J.; Erickson, B.W. Int. J. Peptide Protein Res. 1991, 38, 114.

6) Modulation of the Time-Resolved Photoluminescence of Cadmium Selenide by Adduct Formation with Gaseous Amines. Leung, L.K.; Meyer, G.J.; Lisensky, G.C.; Ellis, A.B. J. Phys. Chem. 1990, 94, 1214.

1988-1989

5) Time-Resolved Luminescence of Electron-Hole Pairs in Cd(S,Se) Graded Semiconductors. Hane, J.K.; Prisant, M.G.; Harris, C.B.; Meyer, G.J.; Leung, L.K.; Ellis, A.B. J. Phys. Chem. 1989, 93, 7975.

4) Semiconductor-Olefin Adducts. Photoluminescent Properties of Cadmium Sulfide and Cadmium Selenide in the Presence of Butenes. Meyer, G.J.; Leung, L.K.; Yu, J.C.; Lisensky, G.C.; Ellis, A.B. J. Am. Chem. Soc. 1989, 111, 5146.

3) Dioxygen-Copper Reactivity. Models for Hemocyanin: Reversible O2 and CO Binding to Structurally Characterized Dicopper(I) Complexes Containing Hydrocarbon-Linked Bis[2-(2-pyridyl)ethyl]amine Units. Karlin, K.D.; Haka, M.S.; Cruse, R.W.; Meyer, G.J.; Farooq, A.; Gultneh, Y.; Hayes, J.C.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 1196.

2) Selective Detector for Gas Chromotography Based on Adduct-Modulated Semiconductor Photoluminescence. Lisensky, G.C.; Meyer, G.J.; Ellis, A.B. Anal. Chem. 1988, 60, 2531.

1) Evidence For Adduct Formation at the Semiconductor-Gas Interface. Photoluminescent Properties of Cadmium Selenide in the Presence of Amines. Meyer, G.J.; Lisensky, G.C.; Ellis, A.B. J. Am. Chem. Soc. 1988, 110, 4914.

Book Chapters

9) Recent Advances in Photo-Initiated Electron-Transfer at the Interface Between Anatase TiO2 Nanocrystallites and
Transition-Metal Polypyridyl Compounds. Ardo, S.; Meyer, G.J. in Energy Production and Storage –Inorganic Chemical
Strategies for a Warming World, Crabtree, R.H. Ed.; John Wiley & Sons, 2011, 420.

8) Solar Photochemistry with Transition Metal Compounds Anchored to Semiconductor Surfaces. Meyer, G.J. in
Physical Inorganic Chemistry; Reactions, Processes and Applications; Bakac, A. Ed; John Wiley & Sons, Hoboken, 2010, 501.

7) Biotoxicity of Metal Oxide Nanoparticles. Fond, A. M.; Meyer, G.J. in Impact of Nanomaterials on Environment; Kumar,
C., Ed. Wiley-VCH, 2006, 1.

6) Molecule-to-Particle Charge Transfer in Sol-Gel Materials. Liu, F.; Yang, M.; Meyer, G.J. in Handbook of Sol-Gel Science and Technology: Processing Characterization and Application; Volume II: Characterization of Sol-Gel Materials and Products; Almeida, R.M., Ed.; Kluwer Academic Publishers, 2005, 400.

5) Photo- and Redox-Active Coordination Compounds as Molecular Components in Devices. Bignozzi, C.A.; Meyer, G.J. in Molecules as Components of Electronic Devices; Lieberman, M., Ed.; ACS Symposium Series 844; American Chemical
Society: Washington, DC, 2003, 154.

4) New Approaches for Energy Conversion at Dye Sensitized Electrodes. Bergeron, B.V.; Meyer, G.J. in Photovoltaics for the 21st Century. R. McConnell Ed.; Electrochemistry Society, Washington DC. 2001, 173.

3) Dye Sensitized Electrodes. Qu, P.; Meyer, G.J. in Electron Transfer in Chemistry. V. Balzani, Ed.; John Wiley & Sons; NY 2001, Chapter 2, Part 2, Vol. IV, 355.

2) Photoluminescence of Inorganic Semiconductors for Chemical Sensor Applications. Ko, M.C.; Meyer, G.J. in Optoelectronic Properties of Inorganic Compounds. D.M. Roundhill and J. Fackler, Eds.; Plenum, 1999, 269.

1) Photoluminescent Properties of Cadmium Sulfide in Contact with Gaseous Acids and Bases. Meyer, G.J.; Leubker, E.R.M.; Lisensky, G.C.; Ellis, A.B. in Photochemistry on Solid Surfaces, M. Anpo. Ed.; Elsevier, Amsterdam, 1988, 388.

Proceeding Volumes

10) Synthesis and characterization of TiO2 nanoparticles: anatase, brookite, and rutile. Reyes-Coronado, D.; Rodriguez- Gattorno, G.; Espinosa-Pesqueira, M.; Gardner, J.M.; Meyer, G.J.; Oskam, G. Solar Hydrogen and Nanotechnology II, Jinghua Guo, Ed. Proc. SPIE, 2007, 6650, 1.

9) Aerosol Collection and Analysis Using Diffuse Reflectance Infrared Spectroscopy. Samuels, A.C.; Wong, D.; Meyer, G.J.; Roelant, G.J.; Williams, B.R.; Miles, R.W.; Manning, C.J. Chemical and Biological Sensing V; Patrick J. Gardner; Ed.: Proc. SPIE, 2004, 5416, 224.

8) Quantitative Fourier transform infrared (FTIR) microspectroscopic analysis of Bacillus subtilis endospores. Wong, D.M.; Kalasinsky, V.F.; Meyer, G.J.; Samuels, A.C. Proceedings of the International Symposium on Spectral Sensing Research (ISSSR) 2003; 1.

7) Infrared Spectra of Bacillus subtilis Spores: The Effect of Growth Media. Samuels, A.C.; Ben-David, A.; Wong, D.; St. Amant, D.; Carey, L.; Kalasinsky, V.; Meyer, G.J. Proc. Joint Scientific. Conference on Chemical and Biological Defense, Hunt Valley, MD. 2002.

6) Novel Materials for Photovoltaic Technologies. Alivisatos, P.; Carter, S.; Ginley, D.; Meyer, G.J.; Nozik, A.J.; Rosenthal, S. Proc. Electrochem Soc. 1999, 99-11, 268.

5) Intercomponent and Interfacial Electron Transfer Processes in Polynuclear Metal Complexes Anchored to Transparent TiO2 Films. Bignozzi, C.A.; Argazzi, R.; Indelli, M.T.; Scandola, F.; Schoonover, J.R.; Meyer, G.J. Proc. Indian Acad. Sci. (Chem. Sci.) 1997, 109, 397.

4) Electron Transfer Kinetics in Sensitized TiO2 Photoelectrochemical Cells. Meyer, G.J. American Institute of Physics Conference Proceedings 404: Future Generation Photovoltaic Technologies 1997, 404, 137.

3) Electron Injection Rates in Sensitized Nanostructured TiO2 Photovoltaic Devices. Heimer, T.A.; Meyer, G.J. Proc. Electrochem. Soc. 1995, 121, 167.

2) Efficient Ruthenium Diimine Modified Nanocrystalline TiO2 Photoanodes. Heimer, T.A.; Meyer, G.J. Proc. Electrochem. Soc. 1995, 121, 189.

1) A New Class of Chemical Sensors For Gases Based on Photoluminescence from Semiconductor-Derived Interfaces. Meyer, G.J.; Lisensky, G.C.; Ellis, A.B. Proc.-Electrochem. Soc. 1987, 87-9, 438.

Patents

3) Multifunctional Magnetic Nanowires. Reich, D.H.; Chien, C.L.; Chen, C.; Meyer, G.J.; Searson, P.C. U.S. Patent
Application #143813, Filed May 14, 2002.

2) Solar Cells Incorporating Light Harvesting Arrays. Meyer, G.J.; Lindsey, J.S. Serial No. 6,407,330, issued 2002.

1) Chemical Sensing with Photoluminescent Semiconductor Materials. Meyer, G.J.; Lisensky, G.C.; Ellis, A.B. Serial No.
4,752,588. issued 1988.